skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dong, Shuanglin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract As the fastest growing food production sector in the world, aquaculture may become an important source of nitrous oxide (N2O)—a potent greenhouse gas and the dominant source of ozone-depleting substances in the stratosphere. China is the largest aquaculture producer globally; however, the magnitude of N2O emission from Chinese aquaculture systems (CASs) has not yet been extensively investigated. Here, we quantified N2O emission from the CASs since the Reform and Opening-up (1979–2019) at the species-, provincial-, and national-levels using annual aquaculture production data, based on nitrogen (N) levels in feed type, feed amount, feed conversion ratio, and emission factor (EF). Our estimate indicates that over the past 41 years, N2O emission from CASs has increased approximately 25 times from 0.67 ± 0.04 GgN in 1979 to 16.69 ± 0.31 GgN in 2019. Freshwater fish farming, primarily in two provinces, namely, Guangdong and Hubei, where intensive freshwater fish farming has been adopted in the past decades, accounted for approximately 89% of this emission increase. We also calculated the EF for each species, ranging from 0.79 ± 0.23 g N2O kg−1animal to 2.41 ± 0.14 g N2O kg−1animal. The results of this study suggest that selecting low-EF species and improving feed use efficiency can help reduce aquaculture N2O emission for building a climate-resilient sustainable aquaculture. 
    more » « less